Postprocessing of decoded color images by adaptive linear filtering

نویسنده

  • Ulug Bayazit
چکیده

This paper presents an image adaptive linear filtering method for the reconstruction of the RGB (red, blue, green) color coordinates of a pixel from the lossy compressed luminance/chrominance color coordinates. In the absence of quantization noise, the RGB coordinates of a pixel can be perfectly reconstructed by employing a standard, fixed filter whose support includes only the luminance/chrominance coordinates at the spatial location of the pixel. However, in the presence of quantization noise, a filter with a larger support, that also spatially extends over the luminance/chrominance coordinate planes, is capable of exploiting the statistical dependence among the luminance/chrominance coordinate planes, and thereby yields more accurate reconstruction than the standard, fixed filter. We propose the optimal (in the minimum mean squared error sense) determination of the coefficients of this adaptive linear filter at the image encoder by solving a system of regression equations. When transmitted as side information to the image decoder, the filter coefficients need not incur significant overhead if they are quantized and compressed intelligently. Our simulation results demonstrate that the distortion of the decompressed color coordinate planes can be reduced by several tenth’s of a dB with negligible overhead rate by the application of our image adaptive linear filtering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear filtering of image subbands for low complexity postprocessing of decoded color images

In [1], image adaptive linear minimum mean squared error (LMMSE) filtering was proposed as an enhancement layer color image coding technique that exploited the statistical dependencies among the luminance/chrominance or Karhunen Loeve Transform (KLT) coordinate planes of a lossy compressed color image to enhance the red, blue, green (RGB) color coordinate planes of that image. In the current wo...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Pixel-Based Skin Detection for Pornography Filtering

A robust skin detector is the primary need of many fields of computer vision, including face detection, gesture recognition, and pornography filtering. Less than 10 years ago, the first paper on automatic pornography filtering was published. Since then, different researchers claim different color spaces to be the best choice for skin detection in pornography filtering. Unfortunately, no com...

متن کامل

Adaptive Optimum Notch Filter for Periodic Noise Reduction in Digital Images

Periodic noises are unwished and spurious signals that create repetitive pattern on images and decreased the visual quality. Firstly, this paper investigates various methods for reducing the effects of the periodic noise in digital images. Then an adaptive optimum notch filter is proposed. In the proposed method, the regions of noise frequencies are determined by analyzing the spectral of noisy...

متن کامل

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sig. Proc.: Image Comm.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2003